
Logical Lambda Calculator

Aaron Gorenstein

December 22, 2020

Abstract

I wanted to explore different models of computation. This document
explores how might we realize λ-calculus through the “engine” of first-
order predicate logic. The motivation for this document was a study on
some excellent books[Mic11, SS94] on both these topics. What value this
study provides is largely credited to those books; what errors found here
are my own fault.

This is essentially my personal notes—the exposition is not as exhaus-
tive as I would have liked. Perhaps this can be used as a tangent lecture
in some programming language course.

Contents

1 Introduction 2

2 Representing λ-Calculus in Prolog 2
2.1 Demonstrations . 3

3 Implementing β-Reduction 3
3.1 Demonstrations . 5

4 Evaluation 6
4.1 Demonstrations . 6
4.2 Midpoint Conclusion . 7

5 Introducing an Environment 7
5.1 Evaluation with Sugar . 9

6 The α-Reduction 10
6.1 Demonstrations . 11

7 Implementing Boolean Algebra 11

8 Implementing Arithmetic 12

1

9 Parsing 13
9.1 Tokenizer . 13
9.2 Parser . 14

10 Extensions 17

A Complete Code Listing 18

1 Introduction

Broad Thoughts λ-calculus is a famous and fundamental model of com-
putation. It realizes computation through function application. First-order
predicate-logic is another equally fundamental model of computation. In the
language prolog, it enables computation through unification.

To be clear: These two models realize computation through different mecha-
nisms. In the coarsest terms, λ-calculus iteratively applies variable substitution
(we shall see this ultimately as β-reduction) to produce a quiescent λ-term; this
represents the result of the computation. For the first-order predicate-logic case,
we will search in a depth-first-search-like manner through a possible database of
facts to find the most general answer to a query. Whatever this search finds—or
that it cannot find an answer—represents the result of the computation.

By implementing the means of evaluating λ-calculus expressions in prolog,
we shall hopefully gain a deeper insight—or at least appreciation—for the dif-
ferences.

Reader Beware The history of this document is that I first wrote the major
code in early 2016. Sometime Fall 2016 I added comments and uploaded it to
my Github repository, where it still resides, inside this newer document. In late
2020, I resurrected this and decided to fully document the code via “literate
coding”. So the prose is much newer than the code, though in remembering and
writing I refactored much of the code. Some of the details, of prolog especially,
may be fuzzy, though obviously the root approach and code all works up to the
tests.

2 Representing λ-Calculus in Prolog

The grammar for λ-calculus[Mic11] is strikingly self-contained:

〈expression〉 ::= 〈name〉
| 〈function〉
| 〈application〉

〈function〉 ::= λ 〈name〉 . 〈expression〉

〈application〉 ::= (〈expression〉 〈expression〉)

2

This can be copied almost verbatim into our prolog code:

expression(L) :- name(L).

expression(L) :- function(L).

expression(L) :- application(L).

function([lambda, V, B]) :- name(V), expression(B).

application([E1, E2]) :- expression(E1), expression(E2).

name(X) :- not(is_list(X)), ground(X), X \= lambda.

Listing 1: Initial Lambda Calculus Definitions

What is striking—and this is a tool distinct in prolog—is how the structure
of, e.g., a function is on the left-hand side of the rule. We describe the structure
we expect, and then add further requirements on the right-hand side. This is
contrary to the typical intuition that the LHS is the “input”, and the RHS is the
computation to create the output. (The code will suggest that ideas in many
places, but other places we will not restrict ourselves in that manner!)

Perhaps an analogy is in functional-language-esque pattern-matching, but
by the “bidirectionality” available in prolog it can be used to both break apart
expressions, and build new ones.

2.1 Demonstrations

The following sentences should be true. These sentences are arbitrary, simple
cases to root the above code in real-world examples.

name(x).

name(y).

function([lambda, a, a]).

application([a, b]).

function([lambda, a, [a, b]]).

application([[lambda, a, a], b]).

application([[lambda, a, a], [lambda, c, [lambda, c, c]]]).

not(function([a, b])).

not(function([lambda, a, b, c])).

not(application([lambda, a, b])).

not(name([a])).

Listing 2: Structure.tests

3 Implementing β-Reduction

The fundamental action of λ-calculus is the β-reduction, whereby all instances
of the bound variable are replaced by the applicant. We define this as:

3

beta_reduction([lambda, V, B], A, R) :- replace(V, B, A, R).

Listing 3: Beta Reduction

In English: The β-reduction of λV.B applied to A gives us R, where R is B,
but with all instances of V replaced by A. More immediately: we go through
the body B and do the text-substitution.

Let us see how replace is realized in prolog:

replace(V,V,A,A) :- name(V).

replace(V,W,_,W) :- name(W), V \= W.

replace(V,[lambda, V, B],_,[lambda, V, B]).

replace(V,[lambda, W, B],A,[lambda, W, S]) :-

W \= V,

replace(V,B,A,S).

replace(V, [E1, E2], A, [R1, R2]) :-

replace(V,E1,A,R1),

replace(V,E2,A,R2).

Listing 4: Replace Predicate

4

We shall consider each rule in turn.

1. This is a nice demonstration of “the magic of prolog”. Here the first pa-
rameter is V, and the expression we want to replace, the second parameter,
is also V. In other words, we’ve found the name we want to replace with
A. Consequently, the fourth parameter is the same as A, i.e., we “do” the
substitution.

2. This is a similar situation, but the body W is not the same as the variable
we’re substituting. In that case, there’s nothing to rename, so the out-
parameter is set to W as well, i.e., unchanged, and we ignored the third
parameter.

3. The body B is some function that shadows the bound variable. In this
case we shouldn’t do any replacement, so we completely ignore the third
parameter, and the fourth is our body unchanged.

4. The body B is some function that doesn’t shadow the bound variable. Our
output is the same function, but with the interior body B changed to S,
which is the recursive call.

5. Lastly, this is when we have an appliction: this case doesn’t change which
variables are or aren’t bound, so it’s a straightforward recursive definition.
Note in particular how the output parameter “already uses” R1 and R2,
which feels unintuitive for those accustomed to imperative or functional
languages.

Hopefully this is understood as a fairly concise and immediate definition of
how replacements of β-reductions are realized in λ-calculus. To further eluci-
date, here are some β-reductions demonstration some of the naming behavior.
Observe that we must have a function as the first parameter.

3.1 Demonstrations

beta_reduction([lambda, x, x], a, a).

beta_reduction([lambda, x, y], a, y).

beta_reduction([lambda, x, [lambda, x, [x, y]]], a, [lambda, x, [x, y]]).

beta_reduction([lambda, x, [lambda, y, [x, y]]], a, [lambda, y, [a, y]]).

beta_reduction([lambda, x, x], [lambda, x, [x, x]], [lambda, x, [x, x]]).

Listing 5: BetaReductions.tests

5

4 Evaluation

The complete computation for λ-calculus requires evaluation. Where β-reductions
are only defined for functions, evaluation will take any λ-expression and give
the result. There is applicative order and normal order–we shall do normal.

evaluate([E1, E2], R) :-

evaluate(E1, R1), E1 \= R1,

evaluate([R1, E2], R).

evaluate([E1, E2], R) :-

beta_reduction(E1, E2, R1),

evaluate(R1, R).

evaluate(L, L).

Listing 6: Evaluate

For conciseness the implementation of this procedure uses recursion, and
exploits that prolog will always search for the first solution.

1. The first rule shows that when considering an application, we should first
evaluate its left-hand side (in case if the left-hand side is also an applica-
tion).

2. The second rule will eagerly try to do a β-reduction (which will fail is E1

is not a function) and recurse on the result.

3. The third succinctly capture that, if we are no longer able to evolve the
λ-expression, we’re done. This includes the cases where L is a name or
function.

This definition of evaluation opens the door to multiple answers, essentially
each one doing “less and less” computation. We order of rules in the procedure
means that the first answer always has the maximal amount of computation.
See chapter 7 of [SS94] for a discussion of how rule-order shapes the order of
solutions found.

4.1 Demonstrations

evaluate(a, a).

evaluate([lambda, a, a], [lambda, a, a]).

evaluate([[lambda, a, a], b], b).

evaluate([[lambda, x, [lambda, y, [y, x]]], [[lambda, a, [a, a]], b]] ,

[lambda, y, [y, [[lambda, a, [a, a]], b]]]).↪→

Listing 7: Evaluation.tests

The last line confirms that we have normal-order evaluation; observe how
we don’t evaluate the self-apply function.

6

4.2 Midpoint Conclusion

In a sense, we have achieved our goal! We have a (rather awkward) way of
writing arbitrary lambda expressions and evaluate them. Are we done?

By analogy, I would suggest we have something like the ALU in a CPU. We
can do the fundamental operations we’re interested in, but lack memory or any
reasonable interface to actually deploy this computation. The following section
we introduce an extremely bare-bones environment so that we may more easily
do interesting computation. There is still quite a distance to, say, Scheme (and
indeed, we are not going to be getting there), but this will contain a few more
interesting applications of prolog to illuminate interesting things in λ-calculus.

5 Introducing an Environment

The simplest environment would be to “save” an atom, such as identity, and
associate it with a value, such as [lambda, x, x]. This is so that in future
cases where we see the (unbound) atom identity, we would replace it with
the value. This sort of machinery is conventionally called “sugaring” (and its
removal, which I’ll call “desugaring”). It adds no real additional computational
power, just convenience. This is a very primitive macro system, in a sense.

We can start with some basic values. Classic definitions for, e.g., logical
values include:

(define true (lambda x (lambda y x)))

(define false (lambda x (lambda y y)))

(define and (lambda x (lambda y ((x y) false))))

(define not (lambda x ((x false) true)))

Listing 8: Logic Definitions

A fuller exploration of these, including how these values were determined,
can be found in [Mic11].

Assuming we have those names mapping, we would like to replace those
names with their associated expressions before evaluation. Of course, λ-calculus
machinery is excellent at replacing names with other values:

desugar([N,E], L, R) :- beta_reduction([lambda, N, L], E, R).

desugar_all(L, D, R) :- foldl(desugar, D, L, R).

Listing 9: Desugaring

7

For each name, λ-expression pair (N,E), we essentially compute: R =
((λN.L)E), which means any unbound N in L is replaced by the λ-expression
E. That’s exactly what we want, machinery-wise.

So given a sugar-using λ expression, we can now succinctly take out the
sugar, opening the door for further evaluate-ing. However, the result of that
computation would be unsugared. So an expression like ((and false) true),
which we would hope give us false, would in fact give us lambda, x, [lambda,

y, y]. We would like resugar those results. In spirit, this is “merely” doing
beta-reduction in reverse:

resugar([N, E], L, N) :- isomorphic(E, L).

resugar(M, [lambda, V, B], [lambda, V, SB]) :- resugar(M, B, SB).

resugar(M, [E1, E2], [R1, R2]) :-

resugar(M, E1, R1),

resugar(M, E2, R2).

resugar(_, L, L).

resugar_all(L, D, R) :- foldl(resugar, D, L, S), S \= L, resugar_all(S, D, R).

resugar_all(L, _, L).

Listing 10: Resugaring

8

How does this resugaring work? Consider each rule:

1. The first rule is the main machinery: if the λ-expression L is isomorphic
to the expression E that is sugared as name N, we should output N.

2. Rules 2 and 3 are the recursive exploration of the λ-expression.

4. Rule 4 ensures that we always succeed at resugaring, even if we fail to do
any actual substitution.

5. We will maximally apply resugaring, and then if there was any change try
again.

6. Again we ensure that we’ll always succeed at resugaring even if no changes
were detected.

An unfortunate detail of this is that this is quite inefficient. It is likely a prolog
expert can take a look at this procedure or isomorphic (listing 13) and improve
the performance. An obvious experiment is to put the isomorphic rule “lower
down” the list, but in my limited experiments that merely puts the slowdown
elsewhere. An alternative is to replace the first rule with resugar([N, L], L,

N).1 This works for our examples, and is much faster, but without isomorphic
we risk being confused by otherwise-equivalent λ-expressions having different
variable names.

It is likely, though I have no considered it formally, that this is not a rigorous
resugaring method. We are in essence trying to tile a tree, (recursively?) and
I would bet that’s at least NP-hard, if not worse. Another formulation may
be treating the macros as grammar productions, and finding the best parse of
this tree. I would describe the above algorithm as a greedy approach, but it is
enough to get us what we want for this demonstration document.

5.1 Evaluation with Sugar

We can combine the desguar, resugar, and evaluation procedures to define:

compute(L, D, R) :-

desugar_all(L, D, DL),

evaluate(DL, S),

resugar_all(S, D, R).

Listing 11: Compute

1The key here is that we are not calling isomorphic.

9

Where D is some sequence of N, E (name, value) pairs that we’ve defined
elsewhere.

This is the complete computational and expressive power of the code in this
document. There are still limitations—see section 10—but an interested (and
patient. . .) reader can use this to explore λ-calculus in prolog with a workable
way of referring to the higher-level definitions.

With the viewpoint that the “sugaring” is a limited form of a macro-system,
we can see clearly how macros are distinct from the true β-reductions. They’re
literally a separate clause. This can help make clear why, even as macros in real
languages like scheme, seem so similar to procedures yet still have distinguished
functionality.

6 The α-Reduction

Of course if we have a macro for lambda, y, y, we would want to it to “match”
against even if L is lambda, x, x. That is why we have the clause isomorphic

as part of the resugaring procedure. We would like those to be considered equal
even as they technically differ in variable names. This is an excellent reason to
introduce α-reduction:

alpha_reduction(L, L) :- name(L).

alpha_reduction([E1, E2], [R1, R2]) :-

alpha_reduction(E1, R1),

alpha_reduction(E2, R2).

alpha_reduction([lambda, V, B], [lambda, X, ABB]) :-

gensym(alpha_,X),

replace(V, B, X, BB),

alpha_reduction(BB, ABB).

Listing 12: Alpha Reduction

Observe that the only work is done in the last rule. The runtime-provided
gensym is used to create the next unique atom, beginning with the prefix
alpha , in X. We then replace the variable V with X, and reconstitute our
function. There is no reason why we can’t use beta reduction on the input
function, except that it is unneeded.

We can now define when two λ-expressions are isomorphic:

canon(L, R) :- reset_gensym(alpha_), alpha_reduction(L, R).

isomorphic(A, B) :- canon(A, C), canon(B, C).

Listing 13: Isomorphic

10

6.1 Demonstrations

Here are some quick demonstration/tests of what we can consider isomorphic.

isomorphic(x, x).

isomorphic([lambda, x, x], [lambda, y, y]).

not(isomorphic([lambda, x, x], [lambda, y, [y, y]])).

not(isomorphic(x, y)).

Listing 14: AlphaReduction.tests

We now have a framework to start building up more familiar math systems!

7 Implementing Boolean Algebra

Following in the excellent footsteps of [Mic11], we will start with Boolean alge-
bra. Note that we are using a more Scheme-like syntax for our parentheses. We
will in fact implement a parser that can compile this more traditional syntax
into our prolog objects, demonstrated in section 9.

Recall the logic definitions from earlier, in listing 8. We can use these to
implement my favorite logical function, nand:

<<insert listing 8 (Logic Definitions)>>

(define nand (lambda x (lambda y (not ((and x) y)))))

(execute ((nand true) true))

(execute ((nand true) false))

(execute ((nand false) true))

(execute ((nand false) false))

(halt)

Listing 15: Nand.filetest

This file is a simple test that can fed into our final product at the end of this
document, and we can hand-verify that we get the values we want.

An interesting complication, from those accustomed to stricter programming
environments, is that the definition of nand can be incorrectly defined: (((not
and) x) y), as shown here.

11

<<insert listing 8 (Logic Definitions)>>

(define nand (lambda x (lambda y (((not and) x) y))))

(execute ((nand true) true))

(execute ((nand true) false))

(execute ((nand false) true))

(execute ((nand false) false))

(halt)

Listing 16: WrongNand.filetest

This gives us a gibberish result: the four executions yield true-false-true-
false, as it happens. In some sense it’s not surprising—we’re applying non-
commutative functions in the wrong order—but in another sense it is surprising
that anything happens at all!

8 Implementing Arithmetic

As a final demonstration, we can implement some of the basic building blocks
of arithmetic. Again, as always, the definitions here are all from the excellent
reference book.[Mic11]

<<insert listing 8 (Logic Definitions)>>

(define zero (lambda a a))

(define succ (lambda n (lambda s ((s false) n))))

(define one (succ zero))

(define pred1 (lambda n (n false)))

Listing 17: Arithmetic

We have a sparse demonstration:

<<insert listing 17 (Arithmetic)>>

(execute (succ zero))

(execute (pred1 one))

(halt)

Listing 18: Arithmetic.filetest

This allows us to hand-verify that the value after zero is one, and the value
before one is zero. A great insight.

Arithmetic motivates enabling the creating of recursive functions. While
that is all purely in λ calculus, see section 10 for some discussion. We do not
implement recursion in this document.

Hopefully this and the previous section help demonstrate what we can really
start to do even with the tiny amount of prolog we’ve already written.

12

9 Parsing

The previous sections relied on us translating the Scheme-like lists into prolog-
like lists. We shall implement the parser for that here.

In classic parsing style, we’ll implement a tokenizer, and then a grammar.

9.1 Tokenizer

If memory serves (this is me writing in 2020 trying to remember what I did in
2016) I am greatly indebted to Sterling and Shapiro[SS94] in designing a prolog-
implemented parser. (Certainly I’m greatly indebted to that book regardless!)

read_s(S) :- get_char(C), read_s(C, S).

read_s('\n',[]).

read_s(' ',S) :- get_char(D), read_s(D, S).

read_s('(',['('|S]) :- get_char(D), read_s(D, S).

read_s(')',[')'|S]) :- get_char(D), read_s(D, S).

read_s(C,[N|S]) :- name_char(C), read_name(C,N,D), read_s(D, S).

Listing 19: Tokenizer

The tokenizer is a driver that reads in new characters, and matches them
into tokens: parens, names, or end-of-line. The clause get char is the entry
point into the outside world. Again think of the non-chronological perspective.
It’s almost like we’re building up S. Observe that we use the goal to basically
append to S. The rules, in order:

1. The output is S in the topmost clause. We read in a character and pass
it as the first parameter. In that sense, the first parameter is read s/2

is the “just-read” character.

2. If we just read a newline, we’re done, and our output is the empty sequence
of tokens.

3. If we read a whitespace, discard it.

4. If we read a parens, we push it on to our sequence (the tail S is defined
from the later calls of read s—consider the base case of a newline).

5. The other parens case.

6. Reading a “name” requires additional reasoning, but the end result is the
same: a single atom, N, is pushed on to our sequence of tokens.

The only “interesting” token, then, is that determined by read name. The
clauses for that predicate are as follows:

13

read_name(C,N,E) :-

read_name_chars(S,C,E),

atom_chars(N,S).

read_name_chars([C|S], C, E) :-

name_char(C), !, % needed for io

get_char(D),

read_name_chars(S, D, E).

read_name_chars([],C,C) :- not(name_char(C)).

name_char(C) :- char_code(C,N), N >= 65, N =< 90. % upper case

name_char(C) :- char_code(C,N), N >= 97, N =< 122. % lower case.

name_char(C) :- char_code(C,N), N >= 48, N =< 57. % decimals

Listing 20: Read Name

The output parameter, such that it is, is N in the first rule. That is an
atom, resulted by the character C prepended on to the string S built up by
read name chars. The character E is the evidence that we’ve stopped reading
valid-name-characters (see the last clause of read name chars). This proce-
dure is not dissimiliar to the larger tokenizer machinery.

I can’t explain the need for !, except the comment included from 2016.
This concludes the tokenizer.

9.2 Parser

Now given a sequence (concretely, a list) of tokens, we can distill them into
the nested lists we want for our internal representation. The tricky thing is
matching parentheses.

parse(S,L) :- parse(S, [], [L]).

parse(['('|T], R, [M|L]) :- parse(T, [')'|S], M), parse(S, R, L).

parse([')'|T], [')'|T], []).

parse([N|T], R, [N|L]) :- N \= ')', N \= '(', parse(T, R, L).

parse([],[],[]).

Listing 21: Parser

14

How does this work? That’s an excellent question. We shall go line-by-line:

1. This is the entry point: A parse is valid when the sequence-of-tokens S

yields the λ-expression L. This is implemented by deferring to parse/3,
where the first parameter is some prefix of tokens, the second is the un-
matched suffix of tokens, and the third parameter is the λ-expression of
the prefix. So the entry-point parse is valid when there is no unparsed
suffix.

2. This first rule for parse/3 handles when the next token it sees is open-
parens. This is where much of the trickiness happens. We essentially defer
to a sub-parse of the tail T of that prefix, ending with the matching parens
’)’. The result of that sub-parse is M, which we wrap in a list (because it
was in parens). The remaining suffix of that sub-parse, S, is itself parsed
to give us the tail following that M.

3. When we reach the end of a parens, that is the start of some intermediate
list we build up, so the result of that parse is [].

4. This handles any token not (or), i.e., lambda or a name. In those cases,
we simply push them on to our existing output list.

5. The base case.

Phew! How is it that this seems harder than the λ-calculator!?
We also want to print out our internal lambda representation the same way.

Note that atomic list concat is provided by our environment, and given a
(flat) list of tokens concatenates them into an atom.

lambda_to_atom(L, R) :- parse(S, L), atomic_list_concat(S, ' ', R).

Listing 22: Lambda Printer

Isn’t that neat, we use the parser to “unparse” the λ-expression?
Finally, we want to present a simple user-interactive loop. This is an ex-

tremely primitive REPL, in a sense. We have a few different commands we can
unify against:

execute_command(['define', N, L], D, [[N,R]|D]) :- compute(L, D, R).

execute_command(['execute', L], D,D) :-

compute(L, D, R),

lambda_to_atom(R,O),

write(O), nl.

execute_command(['halt'],_,_) :- halt.

Listing 23: Repl Commands

15

The middle parameter D is the list of our defines—this is our environment.
The interaction, such that it is, against this procedure is as follows:

main_loop(OD) :-

read_s(S),

parse(S,L),

execute_command(L,OD,ND),

main_loop(ND).

main_loop(OD) :- write('Parse error'), nl, main_loop(OD).

main :- main_loop([]), halt.

Listing 24: Main Loop

Observe that main serves as our entry point.
This completes our entire λ-calculator in prolog! The entire file (see ap-

pendix A) is the concatenation of these figures:

% insert listing 1 (Initial Lambda Calculus Definitions)

% insert listing 3 (Beta Reduction)

% insert listing 4 (Replace Predicate)

% insert listing 6 (Evaluate)

% insert listing 12 (Alpha Reduction)

% insert listing 13 (Isomorphic)

% insert listing 9 (Desugaring)

% insert listing 10 (Resugaring)

% insert listing 19 (Tokenizer)

% insert listing 20 (Read Name)

% insert listing 21 (Parser)

% insert listing 22 (Lambda Printer)

% insert listing 11 (Compute)

% insert listing 23 (Repl Commands)

% insert listing 24 (Main Loop)

Listing 25: lambda.pl

16

I hope I was able to share at least some novel insights and enabled some
interesting thoughts.

10 Extensions

I do not intend to extend the ideas here further, but as a conclusion I will list
what I see as next steps.

Express resugaring as β-reduction To me the most fascinating part of pro-
log is how, for instance, our parse procedure could also “unparse”. The
append procedure is the canonical example of this bi-directionality, as far
as I can tell. So I wonder if a single sugar procedure, perhaps intertwined
with isomorphic and beta reduction, could cover both resugar and
desugar.

Extend things to enable recursive definitions The implementation of arith-
metic in λ-calculus motivates recursion[SS94], which in turn reveals some
fascinating limits and interactions of macros versus evaluation. Seeing
what needs to change, if anything, in the computer here to support that
would be a natural extension.

Extend the parser to enable fewer parens A sort of meta-sugaring is pro-
viding a more sophisticated parser that can infer implicit parens. I think
this is interesting in that, as far as I can tell, it would need an implemen-
tation “outside” the existing macro system. If memory serves, that would
be a “reader” macro, rather than a . . . macro-macro.

Continue the functionality in [Mic11] Perhaps with the previous two items
completed, more of [Mic11] can be implemented in this extended environ-
ment. Lists, types, and ultimately all of scheme lay before us!

Implement a λ-expression-walker A λ-expression is basically a tree–and
our α, β reductions are essentially walks of such a tree. Maybe this would
blur the lines between prolog and scheme in a way that detracts from the
document, but providing a second-order predicate to fold or map over a
λ-expression may be neat.

Smarter Isomorphism Perhaps a more efficient tree-isomorphism algorithm
can be implemented and ultimately a faster resugaring.

And I’m sure there are other neat directions people can take this.
Thanks for reading!

17

A Complete Code Listing

1 expression(L) :- name(L).

2 expression(L) :- function(L).

3 expression(L) :- application(L).

4 function([lambda, V, B]) :- name(V), expression(B).

5 application([E1, E2]) :- expression(E1), expression(E2).

6 name(X) :- not(is_list(X)), ground(X), X \= lambda.

7 beta_reduction([lambda, V, B], A, R) :- replace(V, B, A, R).

8 replace(V,V,A,A) :- name(V).

9 replace(V,W,_,W) :- name(W), V \= W.

10 replace(V,[lambda, V, B],_,[lambda, V, B]).

11 replace(V,[lambda, W, B],A,[lambda, W, S]) :-

12 W \= V,

13 replace(V,B,A,S).

14 replace(V, [E1, E2], A, [R1, R2]) :-

15 replace(V,E1,A,R1),

16 replace(V,E2,A,R2).

17 evaluate([E1, E2], R) :-

18 evaluate(E1, R1), E1 \= R1,

19 evaluate([R1, E2], R).

20 evaluate([E1, E2], R) :-

21 beta_reduction(E1, E2, R1),

22 evaluate(R1, R).

23 evaluate(L, L).

24 alpha_reduction(L, L) :- name(L).

25 alpha_reduction([E1, E2], [R1, R2]) :-

26 alpha_reduction(E1, R1),

27 alpha_reduction(E2, R2).

28 alpha_reduction([lambda, V, B], [lambda, X, ABB]) :-

29 gensym(alpha_,X),

30 replace(V, B, X, BB),

31 alpha_reduction(BB, ABB).

32 canon(L, R) :- reset_gensym(alpha_), alpha_reduction(L, R).

33 isomorphic(A, B) :- canon(A, C), canon(B, C).

34 desugar([N,E], L, R) :- beta_reduction([lambda, N, L], E, R).

35 desugar_all(L, D, R) :- foldl(desugar, D, L, R).

36 resugar([N, E], L, N) :- isomorphic(E, L).

37 resugar(M, [lambda, V, B], [lambda, V, SB]) :- resugar(M, B, SB).

38 resugar(M, [E1, E2], [R1, R2]) :-

39 resugar(M, E1, R1),

40 resugar(M, E2, R2).

41 resugar(_, L, L).

42 resugar_all(L, D, R) :- foldl(resugar, D, L, S), S \= L, resugar_all(S, D, R).

43 resugar_all(L, _, L).

44 read_s(S) :- get_char(C), read_s(C, S).

18

45 read_s('\n',[]).

46 read_s(' ',S) :- get_char(D), read_s(D, S).

47 read_s('(',['('|S]) :- get_char(D), read_s(D, S).

48 read_s(')',[')'|S]) :- get_char(D), read_s(D, S).

49 read_s(C,[N|S]) :- name_char(C), read_name(C,N,D), read_s(D, S).

50 read_name(C,N,E) :-

51 read_name_chars(S,C,E),

52 atom_chars(N,S).

53 read_name_chars([C|S], C, E) :-

54 name_char(C), !, % needed for io

55 get_char(D),

56 read_name_chars(S, D, E).

57 read_name_chars([],C,C) :- not(name_char(C)).

58 name_char(C) :- char_code(C,N), N >= 65, N =< 90. % upper case

59 name_char(C) :- char_code(C,N), N >= 97, N =< 122. % lower case.

60 name_char(C) :- char_code(C,N), N >= 48, N =< 57. % decimals

61 parse(S,L) :- parse(S, [], [L]).

62 parse(['('|T], R, [M|L]) :- parse(T, [')'|S], M), parse(S, R, L).

63 parse([')'|T], [')'|T], []).

64 parse([N|T], R, [N|L]) :- N \= ')', N \= '(', parse(T, R, L).

65 parse([],[],[]).

66 lambda_to_atom(L, R) :- parse(S, L), atomic_list_concat(S, ' ', R).

67 compute(L, D, R) :-

68 desugar_all(L, D, DL),

69 evaluate(DL, S),

70 resugar_all(S, D, R).

71 execute_command(['define', N, L], D, [[N,R]|D]) :- compute(L, D, R).

72 execute_command(['execute', L], D,D) :-

73 compute(L, D, R),

74 lambda_to_atom(R,O),

75 write(O), nl.

76 execute_command(['halt'],_,_) :- halt.

77 main_loop(OD) :-

78 read_s(S),

79 parse(S,L),

80 execute_command(L,OD,ND),

81 main_loop(ND).

82 main_loop(OD) :- write('Parse error'), nl, main_loop(OD).

83 main :- main_loop([]), halt.

19

References

[Mic11] Greg Michaelson. An Introduction to Functional Programming Through
Lambda Calculus. Dover, 2011.

[SS94] Leon Sterling and Ehud Shapiro. The Art of Prolog. The MIT Press,
1994.

20

	Introduction
	Representing -Calculus in Prolog
	Demonstrations

	Implementing -Reduction
	Demonstrations

	Evaluation
	Demonstrations
	Midpoint Conclusion

	Introducing an Environment
	Evaluation with Sugar

	The -Reduction
	Demonstrations

	Implementing Boolean Algebra
	Implementing Arithmetic
	Parsing
	Tokenizer
	Parser

	Extensions
	Complete Code Listing

